
eXpect: On the Security Implications of Violations
in AXI Implementations

Melisande Zonta-Roudes
ETH Zurich

Andres Meza
University of California San Diego

Nora Hinderling
ETH Zurich

Lucas Deutschmann
RPTU Kaiserslautern-Landau

Francesco Restuccia
University of California San Diego

Ryan Kastner
University of California San Diego

Shweta Shinde
ETH Zurich

Abstract
The Arm Advanced eXtensible Interface (AXI) protocol is a widely
used on-chip interconnect for processors, accelerators, memories,
and other IPs. Any bugs in the AXI implementations pose a security
risk to the chip’s correctness. Buggy or non-compliant third-party
IPs can use AXI implementation bugs to bypass the security mech-
anisms of the whole system. Identifying AXI implementation bugs
is challenging because the incomplete specifications allow room for
implementation-specific behavior in performant designs. eXpect is
a systematic approach for analyzing AXI implementations to detect
functional and security violations. We use eXpect to test 7 imple-
mentations of varying complexity, including the ones from AMD
Xilinx and RISC-V PULP. We identified 135 property violations.
We sampled 10 of them to show 7 exploits demonstrating that an
attacker can use these bugs to trick victim IPs. Our exploits achieve
outcomes such as using stale data, skipping reads and writes, leak-
ing intermediate data, and reading and writing attacker-controlled
data to attacker-controlled addresses. We evaluated our exploits in
realistic scenarios deployed on FPGA. We show that AMD Xilinx
protocol checker IPs miss 5/7 of our exploits.

ACM Reference Format:
Melisande Zonta-Roudes, AndresMeza, NoraHinderling, Lucas Deutschmann,
Francesco Restuccia, Ryan Kastner, and Shweta Shinde. 2024. eXpect: On the
Security Implications of Violations in AXI Implementations. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD ’24), October
27–31, 2024, New York, NY, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3676536.3676844

1 Introduction
The Arm Advanced eXtensible Interface (AXI) protocol is a speci-
fication for system-on-chip (SoC) communication [14]. It consists
of interfaces such as AXI-Lite and AXI-Full and is a part of the
Advanced Microcontroller Bus Architecture (AMBA) specification
suite [11]. AXI connects Intellectual Property (IP) cores using aman-
ager/subordinate model [47], [12]. It uses handshakes to coordinate
communication via read-and-write transactions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676844

The AXI protocol intentionally maintains a level of ambiguity,
which can lead to the development of divergent implementations of
the same protocol, potentially resulting in IPs operating on contra-
dictory assumptions. These discrepancies can result in functional
and security issues, potentially compromising the system’s integrity.
For instance, an AXI implementation might inadvertently grant
sensitive data access to unintended IPs that use stale data [30], [40].
Furthermore, an implementation could introduce memory corrup-
tion, jeopardizing data integrity and system reliability. Addition-
ally, such discrepancies may result in execution integrity problems,
undermining the system’s trustworthiness. Addressing these chal-
lenges requires comprehensive validation and adherence to protocol
specifications to mitigate the risks of divergent implementations.

eXpect is a tool to detect specification violations in AXI imple-
mentations. eXpect models the AXI protocol as properties that
capture the timing relationship that can be expressed as SystemVer-
ilog Assertions (SVAs). We capture the specifications into sets of
properties to check adherence to AXI. Then we identify gaps within
the existing specifications and add properties that reason about
security. This comprehensive approach results in eXpect model
composed of 13 functional and 17 security properties regrouped into
20 properties spanning 29 signals across unbounded time cycles.
We demonstrate the effectiveness of eXpect by testing diverse AXI
implementations that produce counterexamples for violated prop-
erties. We illustrate how these violations manifest as exploitable
vulnerabilities on real-world setups on FPGAs. Next, we conduct a
comparative analysis between eXpect and commercial verification
IPs. Finally, we propose patches for eXpect-detected violations.
Results. We use eXpect to test 7 implementations varying from
simple state machines, to use-case specific, to production versions
from AMD Xilinx and RISC-V PULP. eXpect detects a total of 135
violations across these 7 implementations, ranging from 15-26 vio-
lations per implementation. We select 10 violations to showcase 7
exploitable vulnerabilities. They demonstrate how the implementa-
tion bugs can be used to compromise security-sensitive IPs (both in
manager and subordinate roles). Our vulnerabilities exploit issues
such as stalling, dropping, silent failures, and reordering transac-
tions. We test realistic setups with functional IPs and interconnects
that act as intermediaries between IPs and the AXI bus itself. Addi-
tionally, we test a range of IPs from AMD Xilinx that developers
can integrate into their designs to act as Verification IPs, facilitating
ongoing transaction checks and violation flagging [8], [7], [6]. We
examine if their violations align with those reported by eXpect.

https://doi.org/10.1145/3676536.3676844
https://doi.org/10.1145/3676536.3676844
https://doi.org/10.1145/3676536.3676844

ICCAD ’24, October 27–31, 2024, New York, NY, USA Zonta et al.

0 1 2 3 4 5 6

clk

resetn

arvalid

arready

araddr addr1 addr2

0 1 2 3 4 5 6

clk

resetn

arvalid

arready

araddr addr1 addr2

Figure 1: (a) Expected specifications behavior (b) Observed behavior

1. always @(posedge S_AXI_ACLK)
2. begin
3. if (~axi_arready && S_AXI_ARVALID)
4. begin
5. // indicates that the
6. // subordinate has accepted
7. // the valid read address
8. axi_arready <= 1'b1;
9. // Read address latching
10. axi_araddr <= S_AXI_ARADDR;
11. end
12. else
13. begin
14. axi_arready <= 1'b0;
15. end
16. end
17. end

1. On every rising edge of clk:
2. if (not arready and arvalid):
3. // indicates that the
4. // subordinate has accepted
5. // the valid read address
6. arready = 1;
7. // Read address latching
8. araddr = addr2;
9. else:
10. arready = 0;
11. end if
12.end

Figure 2: (a) Verilog implementation of a part of the read transaction AXI
subordinate secondary. The lower case signals indicate subordinate inputs
and the upper case are manager inputs (subordinate outputs) (b) Pseudo code.

We report that the majority of eXpect vulnerabilities remain unde-
tected, with only 2 out of 7 being identified by the AMD Xilinx IPs.
Finally, we measure the impact of our proposed fixes to the original
implementations.
Contributions. Our three main contributions are:
1. eXpect is the first model that attempts to capture not only the
functional but also new security semantics of AXI at an intra-
transaction level.
2. eXpect tests 7 implementations and reports 28 functional and
107 security violations. We build 7 exploits to showcase the security
impact.
3. We identify verification gaps in existing industrial verification
IPs and suggest remedies for their AXI implementations.

We disclosed our findings to PULP and AMD Xilinx on January
2024. eXpect is available at https://axi-security.github.io/expect.

2 Motivation
We take a concrete AXI implementation and explain how it violates
the specifications and leads to security vulnerabilities.

2.1 Example
Consider a security-sensitive IP connected as a subordinate via an
AXI bus to a buggymanager IP. Themanager IPmay access sensitive
data or send wrong data to the subordinate IP, such as a memory,
posing security risks like data leakage or memory corruption. For
example, consider the AXI read address channel, which transmits
the address from the manager to the subordinate IP.

The subordinate IP should perform checks before allowing the
manager to access any addresses. But the subordinate IP is not AXI-
compliant so it does not do these checks. If the manager exploits
AXI implementation bugs, it can lead to vulnerabilities, e.g., an
address is checked and disallowed, but the manager still accesses it.
Expected Behavior. The read address channel of the read trans-
action uses three signals: arvalid and araddr are driven by the
manager interface, and arready is driven by the subordinate. As

stipulated in the Arm specifications [14], arvalid signifies the pres-
ence of a valid address on the bus. When asserted, it indicates the
managers’ request for a valid transaction. An assertion of arready
implies the subordinate is ready to sample the address request from
the manager. The coordination between the manager and the subor-
dinate materializes when both arready and arvalid of the address
read channel are concurrently asserted for one clock cycle, resulting
in the transfer of the address. This handshake mechanism ensures
a synchronized and reliable data transfer between the manager and
the subordinate. To ensure a correct handshake, the specifications
dictate a crucial requirement: “When arvalid is asserted, it must
remain asserted until the rising clock edge following the assertion
of the arready signal by the subordinate.” Fig. 1.a illustrates this
requirement where addr2 is accurately sampled during the process.
In this case, the Xilinx AXI-Lite subordinate implementation abides
by an active low reset.
Observed Behavior. Fig. 2.a shows Verilog code for a synchronous
always block that is sensitive to a positive edge of the clk signal.
On a positive edge of clk, the block checks: (a) if the AXI read inter-
face is not ready to accept a new address request (arready); (b) if a
new AXI read address is available at the interface (arvalid). If both
conditions are met, it sets arready to indicate that the subordinate
has accepted the valid read address and latches the read address
(araddr). If the conditions are not met, it sets arready to 0, indi-
cating that the subordinate is not ready for a read operation. Thus
the code snippet does not satisfy AXI requirements as described
above. On line 3 highlighted in Fig. 2.a, arready should be high
for at least one clock cycle and arvalid should remain high for
one more clock cycle after arready is asserted. Hence, the code
allows the timing diagrams shown in Fig. 1.b which shows that
a handshake fails to occur, but due to the address latching in the
implementation, addr1 will reach the subordinate. However, since
the address handshake (arready and arvalid both high) does not
occur, no data is read. Consequently, addr1 is sampled, contrary to
the expected behavior. This poses a security risk as the system may
operate based on outdated or erroneous data from addr1 instead of
addr2 which will never be sampled. Moreover, no data handshake
will follow because of the absence of addr1 handshake leading to
in a denial of service from the view of the subordinate.

2.2 Setup & Problem
In RTL development, testing and validation often involve the use of
System Verilog Assertions (SVA) integrated directly into the RTL.
These assertions aim to identify protocol violations and functional
bugs to ensure the overall performance of the design. However,
it is not always feasible to test and validate all the IPs as some
IPs originate from various sources and providers. Vendors usually
provide encrypted IPs for integration into trusted design. Hence,
our threat model considers a generally unintentional buggy AXI
implementation. Three reasons support this assumption: (a) the
IP does not exhibit any bugs under a normal setting but will fail
in corner case scenarios; (b) the encryption makes it difficult to
analyze the IP for bugs; or (c) the IP is involuntarily non-compliant
to the AXI protocol. Finally, even if the IPs are subject to validation
and testing, it may not be sufficient to catch all security violations.
In summary, we assume that at least one IP in the system does not
adhere to AXI specifications. Then we show that if the system has

https://axi-security.github.io/expect

eXpect: On the Security Implications of Violations
in AXI Implementations ICCAD ’24, October 27–31, 2024, New York, NY, USA

an attacker-controlled IP, it can exploit AXI bugs in the victim IP
leading to security violations (e.g., data leakage or corruption, DoS).

2.3 Solution Insight
The example from Fig. 1 emphasizes the need to extract specifi-
cations and derive properties from them. The specifications cited
in the example dictate that “arvalid must remain asserted until
the rising clock edge following the assertion of the arready by the
subordinate.” We can define a corresponding formal property that
ensures the stability of arvalid until the appropriate address is
sampled during the handshake of the read address channel. Hence if
there was a tool that could check if a given implementation satisfied
this property or not, we could detect specification violations. To this
end, eXpect captures both functional and security specifications,
in form of properties. For a given implementation, eXpect either
deems the property to be satisfied or generates a counterexample
that demonstrates the violation with a concrete input.

3 Background
eXpect captures the full AXI-Lite and burst mode of AXI-Full
specification. We present the building blocks of AXI protocol [14].
Channels Description. The AXI protocol executes two types of
transactions: read and write. AXI employs five distinct channels
allowing for parallel read and write transactions, as illustrated in
Fig. 3. The address channels convey both address and protection
information for both transactions through the read and write ad-
dress channel. In read transactions, data from memory or registers
are transmitted back to the manager through the read data channel.
In write transactions, the write data channel transports the data to
be written to the target address. Additionally, a dedicated acknowl-
edgment channel for write transactions transfers acknowledgment
responses from the subordinate to the manager. We reason about
all signals in AXI-Lite. For AXI-Full, we concentrate on the subset
of signals listed below since all the implementations that we tested
only support these signals. We categorize the signals according
to channel c, where c is a prefix replaced by AR, R, AW, W, or B,
depending on the channel:
Handshaking signals: AXI uses cready and cvalid for hand-
shaking between manager and subordinate. cvalid indicates valid
information, while cready shows readiness to accept data.
Transaction and control signals: Address and data channels
carry different information, denoted by caddr and cdata while
protection signals (cprot) ensure data transfer security.
Response signals: Response signals (cresp) on data channels and
acknowledgment channels indicate transaction outcomes.
Burst signals: Signals clen, csize, cburst, and clast optimize
data transfers, specify transfer count, address size, burst type, and
conclusion of bursts, respectively.
Transactions. In a read transaction (refer to Fig. 3.a), while the
system is not under reset (reset = 0), the manager initiates the
process during the read address channel handshake (arvalid and
arready high). It transmits the address (araddr) and protection
information (arprot) on the channel. This prompts the subordinate
to retrieve data from the provided address. The subordinate pro-
cesses the request and transmits data during the read data channel
handshake from the specified memory or registers to the manager.
It places the data (rdata) on the read data channel along with the

Manager
Interface

Subordinate
Interface

Read address channel
Address & control

Read data channel
Read data

Manager
Interface

Subordinate
Interface

Write address channel

Write data channel
Write data

Write acknowledgment channel
Write acknowledgment

Address & control

Figure 3: AXI-Lite transactions (a) Read (b) Write; For AXI-Full, data will be
transferred in bursts

response signals (rresp) and acknowledgment. After receiving the
data, the manager processes the data for further use. In this case,
the specifications maintain proper channel ordering [14], ensur-
ing that the activation of the read address channel precedes the
corresponding data one. In a write transaction (Fig. 3.b) outside of
reset, the manager initiates the process by transmitting the write
address and protection information (awaddr and awprot) via the
write address channel handshake (awvalid and awready). In the
write data channel handshake (wvalid and wready), the manager
sends the data (wdata) on the data channel without a specific or-
dering between the channels. The subordinate then writes the data
to the correct location, and acknowledges the write transaction’s
status through bresp on the write acknowledgment channel.
Burst Transactions. In an AXI read transaction in burst mode,
the manager defines the burst by setting parameters arlen, arsize,
and arburst. Unlike a non-burst read, the subordinate accesses con-
secutive addresses within the burst range, fetching and sequentially
placing data (rdata) on the read data channel. The subordinate
asserts rlast to signify the end of the burst transfer. In an AXI
write transaction under burst mode, the burst parameters (awlen,
awsize, and awburst) are defined similarly, and address process-
ing and last data transfer indication operate the same as in a read
transaction. The wlast signal marks the end of the burst transfer.

4 eXpectModel
We highlight our insights, present eXpect properties, and explain
the security implications of property violations.

4.1 Challenges and Approach
We consider potential models and reason for our choices.
Timing. Hardware protocol analysis primarily emphasizes a trans-
actional perspective instead of timing [29], [46]. A timing agnostic
analysis can miss issues for data arrival times and handshakes,
which are crucial for system synchronization and reliability. This
can result in an incomplete protocol behavior and security gaps.
Thus eXpect models timing requirements within a transaction.
Granularity. As outlined in Section 3, the AXI protocol operates
at handshakes and channels granularity. On one hand, monitoring
signal values helps analyzing handshakes, ensuring accurate timing.
On the other hand, channel-level modeling is useful for concerns
like channel ordering to capture overall event sequences. eXpect
analyses at the channel level rather than at the transaction level
i.e, signal relationships within channels and channel ordering to
capture intra-transaction properties.
Handling Ambiguity. Translating hardware protocols specifica-
tions into properties requires handling specifications ambiguities.
They may arise from vague descriptions, differing interpretations,

ICCAD ’24, October 27–31, 2024, New York, NY, USA Zonta et al.

or incomplete specifications. SVAs require a level of clarity and un-
ambiguity that may not align with the nature of hardware protocol
specifications. To address this, eXpect focuses on the mandatory
requirements, leaving aside the ambiguous statements that do not
endanger the system’s functional correctness and reliability.

Table 1 illustrates two common types of statements found in
the specification. The first example e.g.1 demonstrates a manda-
tory requirement leaving little room for interpretation. However,
some implementations deviate from this requirement, as depicted
in Interpretation 1. Interpretation 2 aligns with our deemed correct
interpretation from which we derive the SVA. The second example
e.g.2 shows a recommendation where no specific interpretation
takes precedence, as both behaviors are deemed acceptable. While
we typically opt not to model e.g.2 type, as it is very ambiguous,
in this case, we use it as a baseline for refining the base model
into a more secure version, implementing Interpretation 2 in an
SVA. Implementations adhering to Interpretation 1 are compliant
with the specifications but may pose a security risk; hence, we
recommend compliance with Interpretation 2. Our specification
refinement in the second scenario establishes a precise channel
ordering, ensuring the accurate association of data with addresses.

4.2 Functional and Security Properties
In eXpect, we manually extract functional properties from the
specifications by translating them into timing properties as SVAs.
We summarize our properties below and list them in Table 2.
Base. We first capture functional properties.

Channel Ordering (𝑃1−2). In a read transaction, the data channel
should become active after the address handshake. For the write,
the acknowledgment should follow the data and address handshake.

Stability (𝑃3−5). For both transactions, the specificationmandates
correct sampling of address, control information and acknowledg-
ments. Hence, the AXI protocol mandates that these signals should
stay stable until the corresponding channel handshakes completion.

Reset mechanism (𝑃6−7). AXI supports both asynchronous and
synchronous reset mechanisms to reset the interface and restore
the system to a known state. The specification only states the reset
of the valid signals of each channel.
Security. Next, we add the security properties to eXpect.

Sensitive Data Stability (𝑃8−9). Although the specifications man-
date the stability of certain signals, they do not encompass all
sensitive signals, such as data and response across every channel.

Error handling (𝑃10). AXI maintains data transaction integrity
and reliability via its response signals, enabling the manager to
ascertain transaction outcomes and respond accordingly. The en-
coding of these signals indicates transaction validity, so eXpect
includes properties to verify this correlation.

Strict Ordering (𝑃11−13). The specification dictates mandatory
sequences for some handshakes and signals, but there is significant
ambiguity and flexibility concerning others. eXpect refines these
requirements. In write transactions, eXpect ensures dependable
execution by stipulating that data transmission must follow the
transmission of the address specifying its intended write location.
After sampling the associated address and writing the data, there
should be an acknowledgment. We apply this to the burst mode too,
making sure the acknowledgment follows the last data transfer.

Advanced Reset mechanism (𝑃14−15). The reset mechanism does
not cover the clearing of all signals, so eXpect completes it.

Stale data invalidation (𝑃16). A low valid signal on the read data
channel indicates that the read data becomes invalid. Consequently,
eXpect clears associated data when this valid signal is low.

Strict Ordering in burst mode (𝑃17−20). eXpect adapts the strict
ordering properties to the burst mode.

4.3 Effects of Properties Violations
Direct violations of the above properties can lead to diverse cate-
gories of undesirable effects: (a) Ordering properties violations can
lead to stale data usage which violate integrity of subsequent trans-
actions because it uses outdated information; (b) Stability properties
violations can result in dropped transactions leading to incomplete
or lost data transfers (c) Ordering properties violations introduce
unintended memory alterations when potential write and read oper-
ations use incorrect addresses (d) Stability and ordering properties
violations can also lead to stuck transactions.

5 eXpect Tool
eXpect has 30 properties, which we test on 7 implementations.

5.1 eXpect Implementation
We implement eXpect using the Questa simulation and verifica-
tion tool [37]. Given a set of properties and an implementation, it
classifies properties as being violated or proven. When violated, it
produces a counter-example trace. We analyze the trace’s violated
property. Next, we execute the counterexample input in a Vivado
test bench alongside other signals from the implementation to vali-
date reproducibility and investigate the impacts [9]. We categorize
the impacts as functional or security-related and develop exploits.

5.2 Evaluation Targets
Selection of AXI Implementations. The AXI protocol is imple-
mented in Verilog, VHDL, and SystemVerilog. We examine open-
source (e.g., RISC-V, personal projects) and proprietary implemen-
tations, the latter involving Verilog extraction by creating axi4
peripheral in Vivado[10]. We test a simple manager or subordinate
IP and use a dedicated testbench to confirm functional validity
of the AXI implementation. Table 3 shows our test subjects and
their respective complexities. We deliberately choose implemen-
tations with varying complexity (line count) to explore potential
correlations with the number of counterexamples.
1. SM [20] and SF [21] are open-source implementations showing
an interpretation of the specifications as a state machine and a
simplified version of the AXI-Lite protocol’s interface, respectively.
2. XSL [4] and XML [3] are AMD Xilinx AXI-Lite subordinate and
managers implementations extracted using Vivado respectively.
XSF [2] and XMF [1] are AXI-Full counterparts. The subordinate
emulates a small memory system, utilizing four built-in registers.
3. PU is part of PULP, an open-source RISC-V project [35].
Implementations Viability. We select these implementations by
testing their functionality, read andwrite transactions with one data
transfer at a time and in burst mode through simulation. We only
pick implementations that pass these tests successfully, confirming
their operability and basic functionality. During this selection, our
objective is not to induce edge cases or expose non-compliance

eXpect: On the Security Implications of Violations
in AXI Implementations ICCAD ’24, October 27–31, 2024, New York, NY, USA

Table 1: Example of specifications, interpretations, and corresponding SVA

e.g. AXI Specifications Interpretation 1 Interpretation 2 SVA

1
"When asserted, arvalid must remain
asserted until the rising clock edge
after the subordinate asserts arready"

arvalid can be unasserted
when arready is asserted

arvalid needs to still be asserted
when arready is asserted

assert property (@(posedge clk) disable iff (arvalid && arready)
(!reset && arvalid && !arready)⇒ arvalid);

2
"The subordinate can assert wready
before awvalid or wvalid,
or both, are asserted"

wready is asserted before
awvalid

awvalid and awready must be
asserted before asserting wready

assert property (@(posedge clk)
(!reset && awvalid && awready) ⇒ !wready);

Table 2: eXpect Properties

P # c. Property.

1 - rvalid cannot be asserted simultaneously
with arvalid and arready

2 - bvalid cannot be asserted simultaneously
with wvalid and wready

3 all cvalid must be high until the rising clock edge after cready is asserted
4 caddr
5 AR,AW

cprot
must remain stable until the rising clock edge
after cready is asserted

6 AR,AW,W cvalid
7 R,B cvalid

should be nulled out during synchronous
or asynchronous reset

8 R,W cdata
9 R,B cresp

must remain stable until the rising
clock edge after cready is asserted

10 R,B cresp=00 if the transaction is successful (AXI-LITE specific)
11 - Once araddr has been sampled, rdata should eventually follow
12 - Once awaddr has been sampled, wdata should eventually follow

13 - The acknowledgment of the write transaction
should follow the associated address and data

14 R,B rdata, cresp

15 AR,AW caddr, cprot
wdata

should be nulled out during synchronous
or asynchronous reset

16 - Data must be cleared if cvalid is deasserted
17 R,W clast must be asserted at the last data transfer while cvalid is asserted
18
19
20

- Same as 𝑃11-𝑃13 in burst mode with added dependency to clast

Table 3: Implementations details with number of lines (LOC)

Implementations Name Language AXI role LOC
State-machine [20] SM System Verilog Subordinate 76
Subordinate for FPGAs [21] SF Verilog Subordinate 153
Xilinx Lite Subordinate [4] XSL Verilog Subordinate 404
Xilinx Lite Manager [3] XML Verilog Manager 433
PULP [35] PU System Verilog Subordinate 463
Xilinx Full Subordinate [2] XSF System Verilog Subordinate 619
Xilinx Full Manager [1] XMF System Verilog Manager 906

with specifications. The selected subordinate implementations un-
dergo functional reset and read/write traffic generator tests, while
the manager ones are assessed with resets and traffic responses.
Although cprot is part of the AXI specifications, none of the im-
plementations have any logic for the protection signals.

6 Evaluation
We first analyze the eXpect violations and then build exploits. We
compare eXpect to verification IPs and patch the violations.

6.1 Analysis of Reported Violations
We execute eXpect on 7 implementations and report the summary
of the violations in Table 4. We observe 135 violations and 50 proven
properties across the 7 implementations. There is no correlation
between the number of violations and implementation complexity.
The implementations with more features trigger a higher number
of property violations than SM and SF with omitted features like
access control. As for XML and XMF, the number of violations
is 21 and 26, respectively, which can be explained by poor man-
ager implementation. We also observe that certain properties are

Table 4: Results for violations for 7 implementations where ✗represents the
properties violated and ✓the proven ones

Prop.
Category P # c. SM SF XSL XML PU XSF XMF

𝑃1 - ✓ ✗ ✗ ✗ ✓ ✓ ✗Channel
Ordering 𝑃2 - ✓ ✗ ✓ ✗ ✓ ✗ ✗

AR ✗ ✗ ✗ ✗ ✗ ✗ ✗
R ✗ ✓ ✓ ✗ ✗ ✓ ✗
AW ✗ ✗ ✗ ✗ ✗ ✗ ✗
W ✗ ✗ ✗ ✗ ✗ ✗ ✗

𝑃3

B ✗ ✓ ✓ ✗ ✗ ✓ ✗
AR ✗ ✗ ✗ ✗ ✗ ✗ ✗

𝑃4 AW ✗ ✗ ✗ ✗ ✗ ✗ ✗
AR ✗ ✗ ✗ ✓ ✗ ✗ ✓

Stability

𝑃5 AW ✗ ✗ ✗ ✓ ✗ ✗ ✓

𝑃6 - ✓ ✗ ✓ ✓ ✓ ✓ ✓Reset
mechanism 𝑃7 - ✓ ✗ ✓ ✓ ✓ ✓ ✓

R ✗ ✓ ✓ ✗ ✗ ✗ ✗
𝑃8 W ✗ ✗ ✗ ✗ ✗ ✗ ✗

R ✓ ✗ ✓ ✗ ✓ ✓ ✗

Sensitive
data

stability 𝑃9 B ✓ ✓ ✓ ✗ ✓ ✓ ✗

R ✓ ✗ ✓ ✗ ✓ ✓ ✗Error
handling 𝑃10 B ✓ ✗ ✓ ✗ ✓ ✓ ✗

𝑃11 - ✗ ✗ ✗ ✗ ✓ ✗ ✗
𝑃12 - ✗ ✗ ✗ ✗ ✓ ✗ ✗

Strict
ordering

𝑃13 - ✗ ✗ ✗ ✗ ✗ ✗ ✗

𝑃14 - ✗ ✗ ✗ ✗ ✗ ✗ ✗Advanced
reset mech 𝑃15 - ✗ ✗ ✗ ✗ ✗ ✗ ✗

Stale data 𝑃16 - ✗ ✗ ✗ ✗ ✗ ✓ ✗

R NA NA NA NA NA ✗ ✗Last
burst check 𝑃17 W NA NA NA NA NA ✗ ✗

𝑃18 - NA NA NA NA NA ✗ ✗
𝑃19 - NA NA NA NA NA ✗ ✗

Strict
ordering

in burst mode 𝑃20 - NA NA NA NA NA ✗ ✗

Total ✗/Total ✓ - - 17/8 21/4 15/10 21/4 15/10 20/10 26/4

consistently violated across all implementations. P3 (AW, W), P4, and
P8 (W) are not enforced at all according to the specifications; these
properties primarily pertain to the stability of information (address,
data). On the other hand, properties P13, P14 as well as P20 and
P19, P15-P17 are part of our refined model as security properties
so it is not surprising that they have not been included in most
implementations. P16, which is violated in the AMD Xilinx AXI-
Lite implementation (XSL), has been added in the AXI-Full version
(XSF). Moreover, PU [36] unlike the other implementations enforces
strict ordering in read transactions between the address and data
channels and between address/data and acknowledgment channels
in write transactions. Overall, the PULP implementation demon-
strates higher consistency in address and data latching. PU adheres
correctly to the address latching from the specifications.

6.2 From Violations to Vulnerabilities
We take the counter-examples generated by eXpect and manually
analyze them.We create a testbench to confirm the behavior and run
it in simulation using Vivado. We refine our initial traffic generators
and responders to generate synthesizable design sources. We then
load these design sources onto Virtex UltraScale+ FPGA VCU118.
Next, our goal is to craft exploits using single or multiple property
violations to bring about effects such as dropping transactions,
memory corruption, using stale data, and DoS.
Setups Under Test. We select three manager-subordinate se-
tups shown in Fig. 4. In (a) and (b), either the manager or the

ICCAD ’24, October 27–31, 2024, New York, NY, USA Zonta et al.

Manager

Subordinate Subordinate

Interconnect

Manager
M

S

S

M

Subordinate

Manager 2Manager 1
M M

S

S S

M

a. b. c.

Interconnect

Figure 4: Three setups of communication between amanager and a subordinate

Table 5: Mapping vulnerabilities to scenarios and implementations

Vulnerability # Setup # Impl. Mgr Impl. Sub. Interconnect
1 1 NA XSL, PU Xilinx[5]
2.a 2 NA XSL, PU NA
2.b 1 NA XSL NA
3,4,7 1 XMF XSF NA
5,6 3 XML XSL Custom

subordinate is attacker-controlled, while the other components
(manager/subordinate and interconnect) are the victims and their
implementations remain unchanged. In (c), Manager 1 is regarded
as benign, while Manager 2 is considered buggy or non-compliant.
We develop a custom interconnect that follows two key principles.
First, it ensures atomicity of access by separately granting access to
each manager. This means that when Manager 1 attempts to access
the subordinate, Manager 2 will receive only null data. Second,
the interconnect will transfer access to Manager 2 only once the
handshakes for the read address/data channel or write address/data
channel and write acknowledgment for Manager 1 are completed.
Table 5 shows the configuration for each exploit.

6.3 Dropped Transactions
eXpect detects stability and ordering property violations for all
implementations. This can lead to dropped read and write transac-
tions. To demonstrate their impact, we use a non-compliant hence
untrusted AXI manager, which is an IP performing additions, con-
nected to a victim subordinate acting as memory.
Vulnerability 1: Silent transaction dropping in write on PU.
As highlighted in Table 5, the attack scenario is Fig. 4.a with the
addition IP manager communicating directly to the subordinate.
We exploited PU but our approach is applicable to XSL.
Violation: In Fig. 5, the manager writes the data 06 to address 10
at t=2, 08 to 20 at t=4 and 0e to 30 at t=7. The problem arises
because only two out of the three handshakes for sampling the three
addresses and data occur (t=2, t=7). This observation implies that
address 20 and data 08 are not being sampled by the subordinate
(highlighted as red section in Fig. 5.b) which violates P4 (AW).
Consequence: To perform the addition, the manager requests to read
the data from addresses 10, 20 and 30. The data read is 06 and 0c
from 10 and 30 respectively. However, at t=17, nothing is read from
address 20 (00). Hence, the manager sums up the values which
results in 12 instead of 1a.
Vulnerability 2: Silent transaction dropping in read. In viola-
tion 2.a the setup is Fig. 4.b connecting the manager addition IP to
the subordinate through AMD Xilinx crossbar while in violation
2.b the manager is directly connected to the subordinate Fig. 4.a.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

clk

resetn

awvalid

awready

awaddr 00 10 20 30

wvalid

wready

wdata 00 06 08 0c

bvalid

bready

arvalid

arready

araddr 10 20 30

rvalid

rready

rdata 00 06 00 0c

result 00 06 12

Figure 5: Dropped write transaction for PU
0 2 4 6 8 10 12 14 16 18 20

clk

resetn

awaddr 00 10 20 30

awvalid

awready

wdata 00 06 08 0c

wvalid

wready

bvalid

bready

araddr 00 10 20 30

arvalid

arready

rvalid

rready

rdata 00 06 0c

result 00 06 12

Figure 6: Dropped read transaction for XSL

Violation 2.a: We exploit PU. The manager proceeds to do similar
write transactions as in Vulnerability 1. Then, the manager proceeds
to execute three sequential read requests from each address at t=14,
16, and 18, respectively. During this process, the accesses from 10
and 30 clearly display the contained data 06 and 0c respectively.
The problem arises from the read address request from 20 which is
disregarded because of the absence of a handshake and the address
which should have stayed the same until arready is high according
to P4 (AR). This approach is also applicable to XSL.
Violation 2.b: We exploit XSL. In Fig. 6, the manager proceeds with
the same sequential write transactions as before. Subsequently,
three reads are requested. At time t=12, the handshake for address
10 occurs correctly and at t=14 for 06. However, the handshake for
address 20 coincides with the first data handshake, resulting in the
second data handshake occurring after the third address handshake.
Consequently, the second address is overwritten before the second
data handshake, which violates the read channel ordering property
P11. It leads to only 0c from 30 being read missing 08 from 20.
Consequence: The manager, the addition IP, proceeds to sum up
the data after the transactions’ acknowledgments. The sum is 12
instead of 1a, hence the arithmetic operation is corrupted.

6.4 Unintended Memory Alterations
eXpect counterexamples reveal memory corruption issues when
requesting parallel read and write transactions or burst write.
Vulnerability 3: Concurrent read and write transactions for
XSF. The attack scenario is Fig. 4.a with the non-compliant hence
untrusted AXI manager connected to the victim subordinate. In
Fig. 7, the manager simultaneously initiates a write and a read.

eXpect: On the Security Implications of Violations
in AXI Implementations ICCAD ’24, October 27–31, 2024, New York, NY, USA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

clk

resetn

awburst 1

awlen 1

awaddr 10

awvalid

awready

wdata 1 2

wlast

wvalid

wready

bvalid

bready

arlen 1

araddr 00 10

arvalid

arready

rvalid

rready

rlast

rdata 0 0 0 0 2 0 0 0 0 0 0

Figure 7: Wrong read data due to memory corruptions for XSF
0 1 2 3 4 5 6 7 8 9 10 11 12 13

clk

resetn

awburst 1

awlen 03

awaddr 000 010

awvalid

awready

wdata 00a 00b 00c 00d 00e 00f 010 011

wlast

wvalid

wready

bvalid

bready

mem_addr 00 01 02 03 04

data_reg 0a 0b 0c 0d 0e 0f 10

Figure 8: Memory corruption after an non-allowed write transaction for XSF

Violation: Specifically, the manager aims to write the data 1 to
address 10 while also requesting a read from address 00 at t=4.
However, despite the AXI protocol being designed to accommodate
such scenarios, these transactions are mishandled by the subordi-
nate. At t=6 and t=9, no data is stored in address 00, as it is solely
read during the transaction. Subsequently, the manager performs
another read from address 00 at t=12, it reads 2 at t=13 and 0 at
t=16. This is correlated to the violation of P8 (R). The problem is
that no write operation has been executed on address 00. Then at
t=19, when address 10 is latched for the final read transaction, both
readouts from address 10 yield 0 despite expecting 1 and 2.
Consequence: Simultaneous read and writes cause a violation, which
results in memory mishandling. This causes memory corruption,
with value 2 stored at address 0 instead of 10, and value 1 dropped.
Vulnerability 4: Memory corruption in XSF. The setup is
Fig. 4.a with the non-compliant manager connected to the victim.
Violation: In Fig. 8, the manager initiates a burst write transaction
of length 4 with an incrementing burst type. The manager wants to
write the data 00a, 00b, 00c and 00d at address 000 as shown by the
handshake at t=4 but wants to perform another write as indicated
by a new address 010 on the bus at t=5. The problem arises from
the subordinate never sending the acknowledgment handshake and
not raising wlast signal, which violates the strict ordering 𝑃19.
Consequence: Unfortunately, the write transaction to address 000
does not perform the correct number of write as shown by the inter-
nal registers mem_addr and data_reg since data is being written to
address 004, which is one more increment than the length specified.

0 1 2 3 4 5 6 7 8

clk

resetn

araddr 1 0

arvalid

arready

rdata 0 aaa

rresp 0

rvalid

rready

0 1 2 3 4 5 6 7 8

clk

resetn

araddr 0 c 0

arvalid

arready

rdata 0 aaa ddd

rresp 0

rvalid

rready

Figure 9: Confidential data breach vulnerability discovered in XSL (a) Benign
manager (b) Untrusted manager

0 1 2 3 4 5 6 7 8 9 10 11 12

clk

resetn

awvalid

awready

awaddr 00 04 08

wvalid

wready

wdata 00 01 02

bvalid

bready

0 1 2 3 4 5 6 7 8 9 10 11 12

clk

resetn

awvalid

awready

awaddr 00 04 08

wvalid

wready

wdata 00 01 02

bvalid

bready

Figure 10: Write transaction in XML (a) followed by another write transaction
(b) not followed by write transaction due to a DoS caused by bvalid

6.5 Stale Data
eXpect identifies violations of stale data clearing. If an AXI non-
compliant IP manages to intercept data intended for a benign man-
ager due to improper channel ordering, it can read protected infor-
mation or trick the victim into using stale data.
Vulnerability 5: Read transaction data leak on XSL. We use
the setup shown in Fig. 4.c and Table 5. One of the two managers
is considered trusted and the other AXI non compliant hence un-
trusted and they both communicate with a benign subordinate.
Here we exploit XSL but this is also applicable for PU.
Violation: Looking at the benign manager in Fig. 9.a, at t=1 arvalid
and arready are high, ready to sample the address 1, then at t=2
rvalid and rready also become high and sample the data aaa
to be returned from address 1. Then the non-compliant manager
(Fig. 9.b) proceeds to a read request by sampling address c at t=5.
The problem comes at t=4 where the data available to the untrusted
manager is actually aaa (highlighted as red in Fig. 9.b) rather than
ddd due to the data on the subordinate side not being cleared out
when rvalidwent low. No data should have been transmitted (P18),
preventing the untrusted manager from receiving it.
Consequence: Hence, data remains on the bus, posing a potential
security breach in the scenario where the untrusted manager can
then access sensitive data from the benign manager.

6.6 Denial of Service (DoS)
eXpect reports counterexamples for ordering properties leading
to stuck transactions because the buggy IP fails to assert a valid or
ready signal subsequently blocking any forthcoming transactions.
Vulnerability 6: Failure on write transaction on XML. The
attack scenario is Fig. 4.b with an AXI non-compliant subordinate
and the manager is benign and being attacked.
Violation: Fig. 10.a shows a manager and subordinate completing a
write transaction (from t=5 to t=7). The manager initiates a second
write transaction (at t=10) (highlighted as red in Fig 10.a). However,
the subordinate can prevent this second write transaction from
occurring by keeping the bvalid signal high. The manager does not
initiate another write transaction (evidenced by awvalid remaining

ICCAD ’24, October 27–31, 2024, New York, NY, USA Zonta et al.

low after t=6 in Fig. 10.b). This is a result of the buggy subordinate
not lowering its bvalid signal at the next positive edge of the clock.
Consequence: Because of the subordinate’s incorrect behavior, the
manager suffers from a DoS preventing it from issuing any requests.
Vulnerability 7: Failure on write transaction on XSF. This
exploit arises from the same situation as Vulnerability 3 but has an
additional consequence. The attack scenario is Fig. 4.a and is dis-
played in Fig. 8. After t=5 the address 010 is not processed since the
previous transaction did not return any acknowledgment (bvalid
never high), violating 𝑃20, which leads to a DoS for both parties.

6.7 Effectiveness of Verification IPs
Although several vendors, such as Cadence and Synopsys, also offer
verification IPs, we do not currently have access to them. Therefore,
our focus is exclusively on AMD Xilinx IPs, which target their
implementations ensuring that the transactions are functionally
correct. AMD Xilinx offers a verification IP (VIP) [8] and a protocol
checker (PC) [7]. The AXI VIP verifies managers and subordinates
in custom RTL designs and the protocol checker core monitors for
violations. The VIP incorporates the same assertions as the protocol
checker. They have over 100 rules on all aspects of AXI-Full. While
many of these rules entail value or range checks of the signals,
there is some overlap with the properties of eXpect. eXpect flags
all violations detected by the VIP for AXI-Lite and burst mode
AXI-Full in the scope of our analysis. Moreover, eXpect identified
10 violated properties that were missed by AMD Xilinx, like the
ordering properties and the advanced reset mechanism. We also
tested if AMD Xilinx VIP can detect our exploits. Of the 8 violations
among the 7 vulnerabilities, 5 are undetected and only 3 detected
by the VIP. The VIP enforces timing checks between cvalid and
cready signals to preempt potential stalling but does not cover all
the eXpect ordering properties. Hence, we notice that the protocol
checker is able to catch the dropped transaction vulnerabilities
derived from the deviation of stability properties, like Vulnerability
1 and 2.a, but Vulnerability 2.b, which is based on a channel ordering
requirement, is undetected. Since the data invalidation property is
absent from the rules, none of the IPs are able to detect the stale
data issues. As for memory corruption exploits, while vulnerability
3 triggered by the read data stability property is covered in the VIP,
the more sophisticated concurrent read and write exploit managed
to evade the VIP’s detection. Vulnerability 6 triggers the VIP’s alert
because it incorporates timeout checks detecting this DoS. However,
vulnerability 7 is not detected despite causing a DoS, indicating
incomplete coverage of their DoS properties.

6.8 Fixing Vulnerabilities
We patch some of the identified vulnerabilities and retest the imple-
mentation with eXpect which does not report further counterex-
amples. Additionally, we synthesize the patched implementation
on our FPGA to ensure that the fixes did not affect functional-
ity. We focus on patching vulnerabilities required for exploits 2
(violation 2.b), 4 and 5, as these vulnerabilities were part of the
undetected ones by the Xilinx Verification IPs. We do not patch the
remaining 2 (#3 and #7) because they require extensive fixes at the
transaction level. Table 6 shows the resource consumption of the
patched implementations compared to the baseline. The fixes for
the read channel ordering in AXI-Lite (𝑃11) and the additional write

Table 6: Patch Results for Previously Listed XSL and XML Vulnerabilities

Resources AXI-Lite AXI-Full
Baseline Patch #2b Patch #5 Baseline Patch #4

FFs/LUTs 48/170 48/170 79/170 94/74 97/74
Logic Levels 1 1 5 5 3
Power (in W) 0.103 0.103 0.104 0.105 0.105

in AXI-Full do not require significant logic additions; constrain-
ing the address latching fixed the problem by limiting the number
of memory writes to the transferred length. However, addressing
data invalidation (𝑃16) necessitates extensive changes: allocating a
new output register for memory read data, incorporating additional
combinational logic to clear this register when the data is no longer
valid. This lead to a significant increase in logic levels.

7 Related Work
Gisselquist Technology LLC. reported that a read transaction in XSF
cannot start as long as a write transaction is ongoing thus breaking
functionality [16]. eXpect confirms this but further reports that
concurrent read and write lead to a vulnerability as exploited in #3.

Fern et al. highlights hardware trojans attacks against Trustzone
using the incomplete specifications of the AXI protocol like the un-
defined behavior of non active valid signals [19], [13]. It emphasizes
the need for a thorough interconnect security verification. Formal
verification approaches for confidentiality [33] or integrity [30] of
SoC systems address a specific threat model (e.g., integration of
malicious third-party IP). While these methods can exhaustively
verify the system’s security with respect to the corresponding threat
model, they omit AXI implementation correctness, unlike eXpect.

Protocol compliance often focuses on functional correctness
and not security [34]. Meza et al. uncovered and solved a secu-
rity threat in a commercial-grade hardware root of trust lever-
aging property-based security verification and information flow
tracking [32]. Restuccia et al. introduced access control systems
for modern AXI-based platforms utilizing property-based verifica-
tion [41], [42], [43]. Kastner et al. and Deutschbein et al. automated
security property generation from existing CVEs [18],[27]. These
are complementary and can be checked against eXpect.

On-chip interconnect can be extended to enforce availability[38],
[39], [25], [31] or access control policies [23],[15]. eXpect applies
beyond a specific interconnect, availability, and IP settings. Software
analysis such as fuzzing [24], [45], [28], [26], symbolic execution,
testing [50], and exploit generation are applied to hardware [49].
They can detect bugs in CPU cores or other IPs and also detect
buggy or malicious hardware [48], [44], [17], [22]. This requires
checking if the behavior is correct or not. Prior works rely on
heuristics, IP-specific, and CVE-based oracles and then build the
analysis frameworks to identify violations. eXpect properties can
be used for such analyses of AXI behavior.

8 Conclusion
We presented eXpect, a tool that captures the AXI specification
and security semantics such as data invalidation, address stability,
channel ordering with 30 properties. eXpect detects 135 violations
in 7 implementations for range of complexity from simple state-
machines to state-of-the-art fromAMDXilinx.We pick 10 violations
to build 7 exploits that demonstrate the security impact of eXpect-
detected violations.

eXpect: On the Security Implications of Violations
in AXI Implementations ICCAD ’24, October 27–31, 2024, New York, NY, USA

References
[1] AMD Xilinx. AXI-Full Xilinx manager implementation. Accessed: July 29, 2024.

[Online]. Available: https://www.xilinx.com/products/intellectual-property/axi/
axi4_ip.html.

[2] AMDXilinx. AXI-Full Xilinx secondary implementation. Accessed: July 29, 2024.
[Online]. Available: https://www.xilinx.com/products/intellectual-property/axi/
axi4_ip.html.

[3] AMD Xilinx. AXI-Lite Xilinx manager implementation. Accessed: July 29, 2024.
[Online]. Available: https://www.xilinx.com/products/intellectual-property/axi/
axi4_ip.html.

[4] AMDXilinx. AXI-Lite Xilinx secondary implementation. Accessed: July 29, 2024.
[Online]. Available: https://www.xilinx.com/products/intellectual-property/axi/
axi4_ip.html.

[5] AMD Xilinx. AXI Xilinx crossbar implementation. Accessed: July 29, 2024.
[Online]. Available: https://www.xilinx.com/products/intellectual-property/axi_
interconnect.html.

[6] AMD Xilinx. AXI Xilinx Firewall. Accessed: July 29, 2024. [Online]. Available:
https://www.xilinx.com/products/intellectual-property/axi-firewall.html.

[7] AMD Xilinx. AXI Xilinx Protocol Checker. Accessed: July 29, 2024. [Online].
Available: https://www.xilinx.com/products/intellectual-property/axi_protocol_
checker.html.

[8] AMD Xilinx. AXI Xilinx Verification IP. Accessed: July 29, 2024. [Online].
Available: https://www.xilinx.com/products/intellectual-property/axi-vip.html.

[9] AMD Xilinx. Vivado. Accessed: July 29, 2024. [Online]. Available: https://www.
xilinx.com/products/design-tools/vivado.html.

[10] AMD Xilinx. Vivado Axi Peripheral Creation. Accessed: July 29, 2024. [Online].
Available: https://www.xilinx.com/video/hardware/creating-an-axi-peripheral-
in-vivado.html.

[11] ARM. AMBA. Accessed: July 29, 2024. [Online]. Available: https://developer.arm.
com/Architectures/AMBA.

[12] ARM. Cortex Core. Accessed: July 29, 2024. [Online]. Available: https://developer.
arm.com/documentation/100095/0003/.

[13] ARM. Trustzone. Accessed: July 29, 2024. [Online]. Available: https://www.arm.
com/technologies/trustzone-for-cortex-a.

[14] ARM. AMBA AXI Protocol Specification, July 2019. ARM IHI 0022G.
[15] Brunel, J., Pacalet, R., Ouaarab, S., and Duc, G. Secbus, a software/hardware

architecture for securing external memories. In IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering (2014).

[16] Dan Gisselqist. Using a formal property file to verify an AXI-lite peripheral.
Accessed: July 29, 2024. [Online]. Available: https://zipcpu.com/formal/2018/12/
28/axilite.html.

[17] Dessouky, G., Gens, D., Haney, P., Persyn, G., Kanuparthi, A., Khattri, H.,
Fung, J. M., Sadeghi, A.-R., and Rajendran, J. HardFails: Insights into Software-
Exploitable hardware bugs. In USENIX Security (2019).

[18] Deutschbein, C., Meza, A., Restuccia, F., Gregoire, M., Kastner, R., and
Sturton, C. Toward hardware security property generation at scale. IEEE S&P
(2022).

[19] Fern, N., San, I., Koç, C. K., and Cheng, K.-T. Hardware trojans in incompletely
specified on-chip bus systems. In IEEE DATE (2016).

[20] Github. AXI-Lite secondary implementation. Accessed: July 29, 2024. [Online].
Available: https://github.com/mmxsrup/axi4-interface/blob/master/axi4-lite/axi_
lite_slave.sv.

[21] Github. AXI-Lite secondary implementation. Accessed: July 29, 2024. [Online].
Available: https://gitlab.com/suoglu/axi-lite-slave/-/blob/main/Sources/ip_repo/
axi_lite_slave_1.0/hdl/axi_lite_slave_v1_0.v.

[22] Hicks, M., Finnicum, M., King, S. T., Martin, M. M. K., and Smith, J. M. Over-
coming an untrusted computing base: Detecting and removing malicious hard-
ware automatically. In IEEE S&P (2010).

[23] Huffmire, T., Prasad, S., Sherwood, T., and Kastner, R. Policy-driven memory
protection for reconfigurable hardware. In ESORICS (2006).

[24] Hur, J., Song, S., Kwon, D., Baek, E., Kim, J., and Lee, B. Difuzzrtl: Differential
fuzz testing to find cpu bugs. In IEEE S&P (2021).

[25] Jiang, Z., Yang, K., Fisher, N., Gray, I., Audsley, N. C., and Dong, Z. Axi-ic-rt:
Towards a real-time axi-interconnect for highly integrated socs. IEEE Transactions
on Computers (2022).

[26] Kande, R., Crump, A., Persyn, G., Jauernig, P., Sadeghi, A.-R., Tyagi, A., and Ra-
jendran, J. TheHuzz: Instruction fuzzing of processors using Golden-Reference
models for finding Software-Exploitable vulnerabilities. In USENIX Security
(2022).

[27] Kastner, R., Restuccia, F., Meza, A., Ray, S., Fung, J., and Sturton, C. Au-
tomating hardware security property generation. In DAC (2022).

[28] Laeufer, K., Koenig, J., Kim, D., Bachrach, J., and Sen, K. Rfuzz: Coverage-
directed fuzz testing of rtl on fpgas. In ICCAD (2018).

[29] Mattarei, C., Mann, M., Barrett, C., Daly, R. G., Huff, D., and Hanrahan, P.
CoSA: Integrated Verification for Agile Hardware Design. In FMCAD (2018).

[30] Mehmedagić, D., Fadiheh, M. R., Müller, J., Antón, A. L. D., Stoffel, D., and
Kunz, W. Design of Access Control Mechanisms in Systems-on-Chip with Formal

Integrity Guarantees. In USENIX Security (2023).
[31] Meza, A., Restuccia, F., Kastner, R., and Oberg, J. Safety verification of third-

party hardware modules via information flow tracking. In Real-Time Intell. Edge
Comput. Workshop (RAGE) Co-Located Design Autom. Conf. (DAC) (2022).

[32] Meza, A., Restuccia, F., Oberg, J., Rizzo, D., and Kastner, R. Security verifica-
tion of the opentitan hardware root of trust. IEEE S&P (2023).

[33] Müller, J., Fadiheh, M. R., Antón, A. L. D., Eisenbarth, T., Stoffel, D., and
Kunz, W. A Formal Approach to Confidentiality Verification in SoCs at the
Register Transfer Level. In DAC (2021).

[34] Nguyen, M. D., Thalmaier, M., Wedler, M., Bormann, J., Stoffel, D., and
Kunz, W. Unbounded Protocol Compliance Verification Using Interval Prop-
erty Checking With Invariants. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2008).

[35] PULP. AXI-Lite Pulp secondary implementation. Accessed: July 29, 2024. [Online].
Available: https://github.com/olofk/axi_node/blob/master/axi_regs_top.sv.

[36] Pulp Platform. Open Source Platform. Accessed: July 29, 2024. [Online].
Available: https://www.pulp-platform.org/.

[37] Questa. Questa property checking. Accessed: July 29, 2024. [Online]. Avail-
able: https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/property-
checking/.

[38] Restuccia, F., Biondi, A., Marinoni, M., and Buttazzo, G. Safely preventing
unbounded delays during bus transactions in fpga-based soc. In IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM) (2020).

[39] Restuccia, F., Biondi, A., Marinoni, M., Cicero, G., and Buttazzo, G. Axi
hyperconnect: A predictable, hypervisor-level interconnect for hardware acceler-
ators in fpga soc. In DAC (2020).

[40] Restuccia, F., and Kastner, R. Cut and forward: Safe and secure communica-
tion for fpga system on chips. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2022).

[41] Restuccia, F., Meza, A., and Kastner, R. Aker: A design and verification
framework for safe and secure soc access control. In ICCAD (2021).

[42] Restuccia, F., Meza, A., Kastner, R., and Oberg, J. A framework for design,
verification, and management of soc access control systems. IEEE Transactions
on Computers (2022).

[43] Siddiqi, F., Hagan,M., and Sezer, S. Pro-active policing and policy enforcement
architecture for securingmpsocs. In IEEE International System-on-Chip Conference
(SOCC) (2018).

[44] Sturton, C., Hicks, M., Wagner, D., and King, S. T. Defeating uci: Building
stealthy and malicious hardware. In IEEE S&P (2011).

[45] Trippel, T., Shin, K. G., Chernyakhovsky, A., Kelly, G., Rizzo, D., and Hicks,
M. Fuzzing hardware like software. In USENIX Security (2022).

[46] Xing, Y., Lu, H., Gupta, A., and Malik, S. Leveraging processor modeling and
verification for general hardware modules. In IEEE DATE (2021).

[47] Xiphera. PRNG AXI peripheral. Accessed: July 29, 2024. [Online]. Avail-
able: https://xiphera.com/random-number-generation/pseudorandom-number-
generation/.

[48] Yang, K., Hicks, M., Dong, Q., Austin, T., and Sylvester, D. A2: Analog
malicious hardware. In IEEE S&P (2016).

[49] Zhang, R., Deutschbein, C., Huang, P., and Sturton, C. End-to-end automated
exploit generation for validating the security of processor designs. In MICRO
(2018).

[50] Zhang, R., and Sturton, C. Transys: Leveraging common security properties
across hardware designs. In IEEE S&P (2020).

https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi/axi4_ip.html
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi-firewall.html
https://www.xilinx.com/products/intellectual-property/axi_protocol_checker.html
https://www.xilinx.com/products/intellectual-property/axi_protocol_checker.html
https://www.xilinx.com/products/intellectual-property/axi-vip.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/video/hardware/creating-an-axi-peripheral-in-vivado.html
https://www.xilinx.com/video/hardware/creating-an-axi-peripheral-in-vivado.html
https://developer.arm.com/Architectures/AMBA
https://developer.arm.com/Architectures/AMBA
https://developer.arm.com/documentation/100095/0003/
https://developer.arm.com/documentation/100095/0003/
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://zipcpu.com/formal/2018/12/28/axilite.html
https://zipcpu.com/formal/2018/12/28/axilite.html
https://github.com/mmxsrup/axi4-interface/blob/master/axi4-lite/axi_lite_slave.sv
https://github.com/mmxsrup/axi4-interface/blob/master/axi4-lite/axi_lite_slave.sv
https://gitlab.com/suoglu/axi-lite-slave/-/blob/main/Sources/ip_repo/axi_lite_slave_1.0/hdl/axi_lite_slave_v1_0.v
https://gitlab.com/suoglu/axi-lite-slave/-/blob/main/Sources/ip_repo/axi_lite_slave_1.0/hdl/axi_lite_slave_v1_0.v
https://github.com/olofk/axi_node/blob/master/axi_regs_top.sv
https://www.pulp-platform.org/
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/property-checking/
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/property-checking/
https://xiphera.com/random-number-generation/pseudorandom-number-generation/
https://xiphera.com/random-number-generation/pseudorandom-number-generation/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Example
	2.2 Setup & Problem
	2.3 Solution Insight

	3 Background
	4 eXpect Model
	4.1 Challenges and Approach
	4.2 Functional and Security Properties
	4.3 Effects of Properties Violations

	5 eXpect Tool
	5.1 eXpect Implementation
	5.2 Evaluation Targets

	6 Evaluation
	6.1 Analysis of Reported Violations
	6.2 From Violations to Vulnerabilities
	6.3 Dropped Transactions
	6.4 Unintended Memory Alterations
	6.5 Stale Data
	6.6 Denial of Service (DoS)
	6.7 Effectiveness of Verification IPs
	6.8 Fixing Vulnerabilities

	7 Related Work
	8 Conclusion
	References

